VASU SINGLA

Google Scholar Link - geHpT2IAAAAJ Website - vasusingla.github.io Email ID - vsingla@cs.umd.edu

RESEARCH STATEMENT

My research interests center on multimodal learning, robustness, and responsible AI. Recently, I have focused on developing improved text+image datasets and addressing safety and privacy risks associated with generative models, particularly in text-to-image generation.

EDUCATION

University of Maryland, College Park Ph.D. in Computer Science	August 2021 - May 2025 (Expected)
Advisor: Prof. Tom Goldstein, Prof. David Jacobs	
University of Maryland, College Park M.S in Computer Science	August 2019 - May 2021 GPA: 4.0/4.0
Punjab Engineering College, Chandigarh B.Tech. + Minors	July 2014 - June 2018 GPA: 8.2/10
SELECTED PUBLICATIONS	
Visit my Google Scholar Link for all publications * denotes equal contribution	
• Transferring Encoders From Small Vision-Language Models & K. Yue, V. Singla , M. Jia, R. Qadri, Z. Cai, T. Goldstein, A	
 From Pixels to Prose: A Large Dataset of Dense Image Capt V. Singla*, K. Yue*, S. Paul, R. Shirkavand, M. Jayawardhar G. Somepalli, T. Goldstein 	-
• PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussia A. Hanson, A. Tu, V. Singla, M. Jayawardhana, M. Zwicker	
 A Simple and Efficient Baseline for Data Attribution on Ima V. Singla, P. Segura, M. Goldblum, J. Geiping, T. Goldstein 	•
 Understanding and Mitigating Copying in Diffusion Models G. Somepalli, V. Singla, M. Goldblum, J. Geiping, T. Golds 	stein NeurIPS 2023
• What Can We Learn from Unlearnable Datasets? Pedro Sandoval-Segura, Vasu Singla , Jonas Geiping, Micah	NeurIPS 2023 Goldblum, Tom Goldstein
 Learning with noisy labels using low-dimensional model traje V. Singla, T. Koike-Akino, M. Brand, K. Parsons, S. Aeron 	•
 Diffusion Art or Digital Forgery? Investigating Data Replicat G. Somepalli, V. Singla, M. Goldblum, J. Geiping, T. Golds 	
 Autoregressive Perturbations for Data Poisoning P. Segura*, V. Singla*, J. Geiping, M. Goldblum, T. Golds 	NeurIPS 2022 tein, D. Jacobs
 Poisons that are learned faster are more effective P. Segura, V. Singla, L. Fowl, J. Geiping, M. Goldblum, D. 	CVPR AROW Workshop Jacobs, T. Goldstein

 Shift Invariance Can Reduce Adversarial Robustness V. Singla*, S. Ge*, R. Basri, D. Jacobs 	NeurIPS 2021
 Low Curvature Activations Reduce Overfitting in Adversarial Training V. Singla, S. Singla, S. Feizi, D. Jacobs 	ICCV 2021
RESEARCH EXPERIENCE	
Google Research Student Researcher	July 2024 - Nov 2024
• Worked on multi-modal foundation models for climate change.	
Cruise Research Research Intern	Jan 2023 - May 2023
• Developed novel applications of diffusion models for Autonomous Vehicle s	systems.
• Trained image-conditioned inpainting diffusion models for internal datasets	5.
Mitsubishi Electric Research Labs Research Intern	June 2022 - Aug 2022
• Proposed new optimization algorithms to improve accuracy on datasets we the role of data quality and labels on the robustness of ML systems.	vith noisy labels. Explored
Apple Research Intern	June 2021 - Aug 2021
• Selected as the top-8 out of 100s of interns to present work to the Sen nization at Apple .	ior VP of AI/ML Orga-
• Proposed new data augmentation techniques to boost performance on low matic Speech Recognition models.	r-resource accents for Auto-
University of Maryland Research Assistant	January 2020 - Present
• Worked with Prof. Tom Goldstein on safety and privacy risks of generative	e models.
• Worked with Prof. David Jacobs on adversarial examples.	
Indian Institute of Technology (IIT), Bombay Research Staff	January 2019 - July 2019
• Developed a novel system for automated symbol detection, text detection documents for structured parsing, analysis and information retrieval.	n and object association in
AWARDS	

NeurIPS 2023 Travel Award, ICLR 2021 Travel Award, UMD Dean's Fellowship

ACADEMIC SERVICE

Grants - Co-wrote and won Amazon Research Award Grant for Building Safer Diffusion models, winning over 50K USD in funding.

Reviewer Conferences - CVPR 2022, ECCV 2022, CVPR 2023, ICCV 2023, NeurIPS 2023, ICLR 2024, NeurIPS 2024

Reviewer Journals - CVIU, Pattern Recognition Letters

Volunteer Services - ICML 2021, NeurIPS 2023, Peer Mentoring Service @ UMD